Adaptive spatial smoothing of fMRI images

نویسندگان

  • Ji Meng Loh
  • M. A. Lindquist
چکیده

It is common practice to spatially smooth fMRI data prior to statistical analysis and a number of different smoothing techniques have been proposed (e.g., Gaussian kernel filters, wavelets, and prolate spheroidal wave functions). A common theme in all these methods is that the extent of smoothing is chosen independently of the data, and is assumed to be equal across the image. This can lead to problems, as the size and shape of activated regions may vary across the brain, leading to situations where certain regions are under-smoothed, while others are over-smoothed. This paper introduces a novel approach towards spatially smoothing fMRI data based on the use of nonstationary spatial Gaussian Markov random fields (Yue and Speckman, 2009). Our method not only allows the amount of smoothing to vary across the brain depending on the spatial extent of activation, but also enables researchers to study how the extent of activation changes over time. The benefit of the suggested approach is demonstrated by a series of simulation studies and through an application to experimental data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis

Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...

متن کامل

Diffusion-based spatial priors for imaging

We describe a Bayesian scheme to analyze images, which uses spatial priors encoded by a diffusion kernel, based on a weighted graph Laplacian. This provides a general framework to formulate a spatial model, whose parameters can be optimized. The application we have in mind is a spatiotemporal model for imaging data. We illustrate the method on a random effects analysis of fMRI contrast images f...

متن کامل

Analyzing fMRI experiments with structural adaptive smoothing procedures.

Data from functional magnetic resonance imaging (fMRI) consist of time series of brain images that are characterized by a low signal-to-noise ratio. In order to reduce noise and to improve signal detection, the fMRI data are spatially smoothed. However, the common application of a Gaussian filter does this at the cost of loss of information on spatial extent and shape of the activation area. We...

متن کامل

Graph-partitioned spatial priors for functional magnetic resonance images

Spatial models of functional magnetic resonance imaging (fMRI) data allow one to estimate the spatial smoothness of general linear model (GLM) parameters and eschew pre-process smoothing of data entailed by conventional mass-univariate analyses. Recently diffusion-based spatial priors [Harrison, L.M., Penny, W., Daunizeau, J., and Friston, K.J. (2008). Diffusion-based spatial priors for functio...

متن کامل

Adaptive smoothing based on Gaussian processes regression increases the sensitivity and specificity of fMRI data.

Temporal and spatial filtering of fMRI data is often used to improve statistical power. However, conventional methods, such as smoothing with fixed-width Gaussian filters, remove fine-scale structure in the data, necessitating a tradeoff between sensitivity and specificity. Specifically, smoothing may increase sensitivity (reduce noise and increase statistical power) but at the cost loss of spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009